From EvoLudo
9 bytes added ,  10:52, 31 August 2016
no edit summary
| style="vertical-align:top" |[[Image:Superstar graph (N=484, B=21, k=6).svg|160px|left|link=Evolutionary graph theory]]
| style="vertical-align:top" |Tutorial on [[evolutionary graph theory]], which provides a formal approach to describe the spreading and fixation (or extinction) of a mutant type in a resident population. The structure of the population is represented as a graph where nodes represent individuals and edges define the neighbourhood of each individualstructured populations. Interestingly, while the fixation probabilities remain unaffected by the underlying population structure for a [[Moran graphs|large class of graphs]]. However, some graphs may act either as [[Evolutionary amplifiers |amplifiers]] or [[Evolutionary suppressors|suppressors ]] of selection by increasing or decreasing the fixation probabilities as compared to unstructured populations. In contrast, fixation and absorption times are very sensitive to changes in the graph structure and hence vary greatly even for graphs that leave fixation probabilities unchanged. Even though fixation times are, in general, not preserved between graphs, [[Graph symmetries|symmetries of a graph ]] can at least ensure that fixation times do not depend on the initial location of the the mutant.This summarizes research efforts that span over a decade, including:
<div class="footnote" style="font-size:smaller">
#Lieberman, E., Hauert, C. & Nowak, M. (2005) ''Nature'' '''433''' 312-316 [ doi: 10.1038/nature03204].