Anonymous

Stochastic dynamics in finite populations: Difference between revisions

From EvoLudo
m
mNo edit summary
Line 7: Line 7:


==Rock-Paper-Scissors game==
==Rock-Paper-Scissors game==
[[Image:Stochastic dynamics - noise term Cxx, no mutations.png|300px|thumb|Blabla.]]
[[Image:Stochastic dynamics - noise term Cxx, no mutations.png|300px|thumb|Value of the element <math>\mathcal C_{xx}(x,y,z)</math> of the noise matrix <math>\mathcal C(\mathbf x)</math> for <math>d = 3</math> strategies and <math>\mu = 0</math>. <math>\mathcal C_{xx}(x,y,z)</math> determines how the noise in the <math>x</math>-direction affects the <math>x</math>-coordinate. In the case of <math>\mu = 0</math>, this noise vanishes for <math>x\to0</math>. For <math>y\to0</math> and <math>z\to0</math> we recover the usual multiplicative noise from one-dimensional evolutionary processes.]]
Payoff matrix:
 
Comparisons between the deterministic dynamics in infinite populations, the stochastic dynamics in finite populations and individual based simulations focus on the [[Rock-Paper-Scissors game]] with a generic payoff
 
<math>\begin{matrix}~&\begin{matrix}\ \ R\quad & S\quad & P\quad\end{matrix} \\
<math>\begin{matrix}~&\begin{matrix}\ \ R\quad & S\quad & P\quad\end{matrix} \\
\begin{matrix}R\\S\\P\end{matrix}&
\begin{matrix}R\\S\\P\end{matrix}&
Line 16: Line 18:
</math>
</math>


Fixed point:
According to the [[replicator equation]] the game exhibits saddle node fixed points at <math>x = 1, y = 1</math>, and <math>z = 1-x-y = 1</math> as well as an interior fixed point at <math>\textstyle\hat{\mathbf x} = \left(\frac12,\frac13,\frac16\right)</math> independent of the parameter <math>s</math>. For <math>s > 1</math>, <math>\hat x</math> is a stable focus and an unstable focus for <math>s<1</math>. In the non-generic case <math>s=1</math> the dynamics exhibits closed orbits.
<math>\hat{\mathbf x} = \left(\frac12,\frac13,\frac16\right)</math>
{{-}}
{{-}}


860

edits