Template:Clobenefitfunc: Difference between revisions
Created page with "; <tt>--benefitfcn <f1[,f2[...]]></tt> : benefit function for each trait: :; <tt>0:</tt> \(B(x,y)=b_0\ y\) :: benefits linear in opponents investment \(y\). :; <tt>1:</tt> \(B(x,y)=b_0\ y+b_1\ y^2\) :: benefits quadratic in opponents investment \(y\). :; <tt>2:</tt> \(B(x,y)=b_0 \sqrt{y}\) :: \(\sqrt{\ }\)-saturating benefits for opponents investment \(y\) :; <tt>3:</tt> \(B(x,y)=b_0 \ln(b_1\ y+1)\) :: \(\ln\)-saturating benefits for opponents investment \(y\) :; <tt>4:<..." |
No edit summary |
||
Line 29: | Line 29: | ||
:; <tt>32:</tt> \(B(x,y)=b_0 x+b_1\ x^2+b_2\ x^3\) | :; <tt>32:</tt> \(B(x,y)=b_0 x+b_1\ x^2+b_2\ x^3\) | ||
:: benefits cubic in own investments \(x\). | :: benefits cubic in own investments \(x\). | ||
; <tt>--benefitparams <b0>[,<b1>[...[;<b'0>[,<b'1>[...]]]]] | ; <tt>--benefitparams <b0>[,<b1>[...[;<b'0>[,<b'1>[...]]]]]</tt> | ||
: parameters \(b_i\) for benefit function of each trait. | : parameters \(b_i\) for benefit function of each trait. |
Latest revision as of 11:26, 13 October 2023
- --benefitfcn <f1[,f2[...]]>
- benefit function for each trait:
- 0: \(B(x,y)=b_0\ y\)
- benefits linear in opponents investment \(y\).
- 1: \(B(x,y)=b_0\ y+b_1\ y^2\)
- benefits quadratic in opponents investment \(y\).
- 2: \(B(x,y)=b_0 \sqrt{y}\)
- \(\sqrt{\ }\)-saturating benefits for opponents investment \(y\)
- 3: \(B(x,y)=b_0 \ln(b_1\ y+1)\)
- \(\ln\)-saturating benefits for opponents investment \(y\)
- 4: \(B(x,y)=b_0 (1-\exp(-b_1\ y))\)
- \(\exp\)-saturating benefits for opponents investment \(y\)
- 10: \(B(x,y)=b_0 (x+y)\)
- benefits linear in joint investments \(x+y\).
- 11: \(B(x,y)=b_0 (x+y)+b_1\ (x+y)^2\)
- benefits quadratic in joint investments \(x+y\) (default).
- 12: \(B(x,y)=b_0 \sqrt{x+y}\)
- \(\sqrt{\ }\)-saturating benefits for joint investments \(x+y\)
- 13: \(B(x,y)=b_0 \ln(b_1\ (x+y)+1)\)
- \(\ln\)-saturating benefits for joint investments \(x+y\)
- 14: \(B(x,y)=b_0 (1-\exp(-b_1\ (x+y)))\)
- \(\exp\)-saturating benefits for joint investments \(x+y\)
- 20: \(B(x,y)=b_0 x+b_1\ y+b_2\ x\ y\)
- benefits linear in investments \(x\) and \(y\) as well as cross term \(x\,y\).
- 30: \(B(x,y)=b_0 x\)
- benefits linear in own investments \(x\).
- 31: \(B(x,y)=b_0 x+b_1\ x^2\)
- benefits quadratic in own investments \(x\).
- 32: \(B(x,y)=b_0 x+b_1\ x^2+b_2\ x^3\)
- benefits cubic in own investments \(x\).
- --benefitparams <b0>[,<b1>[...[;<b'0>[,<b'1>[...]]]]]
- parameters \(b_i\) for benefit function of each trait.