Template:EvoLudoLab:CSD
Along the bottom of the applet there are several buttons to control the execution and the speed of the simulations - for details see the EvoLudo GUI documentation. Of particular importance are the parameters button and the data data views pop-up list along the top. The former opens a panel that allows to set and change various parameters concerning the game as well as the population structure, while the latter displays the simulation data in different ways.
Color code: | Maximum | Minimum | Mean |
---|
Strategy code: | Defect Cooperate
|
---|
Payoff code: | Low High
|
---|
Note: The shades of grey of the payoff scale are augmented by blueish and reddish shades indicating payoffs for mutual cooperation and defection, respectively.
{{{title}}}
{{{doc}}}
Data views | |
Snapshot of the spatial arrangement of strategies. | |
Time evolution of the strategy frequencies. | |
Snapshot of strategy distribution in population | |
Time evolution of the strategy distribution | |
Snapshot of the spatial distribution of payoffs. | |
Time evolution of average population payoff bounded by the minimum and maximum individual payoff. | |
Snapshot of payoff distribution in population. | |
Degree distribution in structured populations. | |
Message log from engine. |
Game parameters
The list below describes only the few parameters related to the continuous snowdrift game. Follow the link for a complete list and descriptions of all other parameters e.g. referring to update mechanisms of players and the population.
- Benefit/Cost Functions
- A variety of different combinations of cost and benefit functions can be selected.
- Benefit \(b_0,\ b_1\)
- Two parameters for the benefit function. Note that not all functions require both.
- Cost \(c_0,\ c_1\)
- Two parameters for the cost function. Note that not all functions require both.
- Mean invest
- Mean trait value of initial population.
- Sdev invest
- Standard deviation of initial population. If set to negative values, the population will be initialized with uniform distributed traits.