EvoLudoLab: Continuous Snowdrift Game - Attractor: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{ | {{EvoLudoLab:CSD| | ||
options="--run --delay 200 --view 3 --reportfreq 20 --popsize 5000 --popupdate r --playerupdate i --updateprob 1.0 --switchpref 0.0 --geometry M --intertype a1 --numinter 1 --reprotype a1 --benefitfcn 11 --benefitparam -1.5:7 --costfcn 1 --costparam -1:4.6 --initmean 0.2 --initsdev 0.05 --mutation 0.01 --mutationtype g --mutationsdev 0.01"| | options="--run --delay 200 --view 3 --reportfreq 20 --popsize 5000 --popupdate r --playerupdate i --updateprob 1.0 --switchpref 0.0 --geometry M --intertype a1 --numinter 1 --reprotype a1 --benefitfcn 11 --benefitparam -1.5:7 --costfcn 1 --costparam -1:4.6 --initmean 0.2 --initsdev 0.05 --mutation 0.01 --mutationtype g --mutationsdev 0.01"| | ||
title=Continuous Snowdrift game: Attractor| | title=Continuous Snowdrift game: Attractor| |
Revision as of 14:30, 26 January 2010
Color code: | Maximum | Minimum | Mean |
---|
Investments: | Minimum Maximum
|
---|
Payoffs & Densities: | Low High
|
---|
Continuous Snowdrift game: Attractor
Driven by selection and mutation, the population converges to stable intermediate investment levels (). The equilibrium is an attractor, i.e. it is convergent stable and evolutionary stable.
The parameters are set to with players imitating better strategies proportional to the payoff difference and an initial trait/investment distribution with in a population of 5'000 individuals. Mutations occur with a probability of 1% and the standard deviation of the Gaussian distributed mutations is .
Data views
Snapshot of the spatial arrangement of strategies. | |
3D view of snapshot of the spatial arrangement of strategies. | |
Time evolution of the strategy frequencies. | |
Snapshot of strategy distribution in population | |
Time evolution of the strategy distribution | |
Snapshot of the spatial distribution of payoffs. | |
3D view of snapshot of the spatial distribution of payoffs. | |
Time evolution of average population payoff bounded by the minimum and maximum individual payoff. | |
Snapshot of payoff distribution in population. | |
Degree distribution in structured populations. | |
Message log from engine. |
Game parameters
The list below describes only the few parameters related to the continuous snowdrift game. Follow the link for a complete list and descriptions of all other parameters e.g. referring to update mechanisms of players and the population.
- --benefitfcn <f1[,f2[...]]>
- benefit function for each trait:
- 0: \(B(x,y)=b_0\ y\)
- benefits linear in opponents investment \(y\).
- 1: \(B(x,y)=b_0\ y+b_1\ y^2\)
- benefits quadratic in opponents investment \(y\).
- 2: \(B(x,y)=b_0 \sqrt{y}\)
- \(\sqrt{\ }\)-saturating benefits for opponents investment \(y\)
- 3: \(B(x,y)=b_0 \ln(b_1\ y+1)\)
- \(\ln\)-saturating benefits for opponents investment \(y\)
- 4: \(B(x,y)=b_0 (1-\exp(-b_1\ y))\)
- \(\exp\)-saturating benefits for opponents investment \(y\)
- 10: \(B(x,y)=b_0 (x+y)\)
- benefits linear in joint investments \(x+y\).
- 11: \(B(x,y)=b_0 (x+y)+b_1\ (x+y)^2\)
- benefits quadratic in joint investments \(x+y\) (default).
- 12: \(B(x,y)=b_0 \sqrt{x+y}\)
- \(\sqrt{\ }\)-saturating benefits for joint investments \(x+y\)
- 13: \(B(x,y)=b_0 \ln(b_1\ (x+y)+1)\)
- \(\ln\)-saturating benefits for joint investments \(x+y\)
- 14: \(B(x,y)=b_0 (1-\exp(-b_1\ (x+y)))\)
- \(\exp\)-saturating benefits for joint investments \(x+y\)
- 20: \(B(x,y)=b_0 x+b_1\ y+b_2\ x\ y\)
- benefits linear in investments \(x\) and \(y\) as well as cross term \(x\,y\).
- 30: \(B(x,y)=b_0 x\)
- benefits linear in own investments \(x\).
- 31: \(B(x,y)=b_0 x+b_1\ x^2\)
- benefits quadratic in own investments \(x\).
- 32: \(B(x,y)=b_0 x+b_1\ x^2+b_2\ x^3\)
- benefits cubic in own investments \(x\).
- --benefitparams <b0>[,<b1>[...[;<b'0>[,<b'1>[...]]]]]
- parameters \(b_i\) for benefit function of each trait.
- --costfcn <f1[,f2[...]]>
- cost function for each trait:
- 0: \(C(x,y)=c_0\ x\)
- costs linear in own investment \(x\).
- 1: \(C(x,y)=c_0\ x+c_1\ x^2\)
- costs quadratic in own investment \(x\) (default).
- 2: \(C(x,y)=c_0 \sqrt{x}\)
- \(\sqrt{\ }\)-saturating costs for own investment \(x\)
- 3: \(C(x,y)=c_0 \ln(c_1\ x+1)\)
- \(\ln\)-saturating costs for own investment \(x\)
- 4: \(C(x,y)=c_0 (1-\exp(-c_1\ x))\)
- \(\exp\)-saturating costs for own investment \(x\)
- 10: \(C(x,y)=c_0 (x+y)\)
- costs linear in joint investments \(x+y\).
- 11: \(C(x,y)=c_0 (x+y)+c_1\ (x+y)^2\)
- costs quadratic in joint investments \(x+y\).
- 12: \(C(x,y)=c_0 (x+y)+c_1\ (x+y)^2+c_2\ (x+y)^3\)
- costs cubic in joint investments \(x+y\).
- 13: \(C(x,y)=c_0 (x+y)+c_1\ (x+y)^2+c_2\ (x+y)^3+c_3\ (x+y)^4\)
- costs quartic in joint investments \(x+y\).
- 20: \(C(x,y)=c_0 x+c_1\ y+c_2\ x\ y\)
- costs linear in investments \(x\) and \(y\) as well as cross term \(x\,y\).
- --costparams <c0>[,<c1>[...[;<c'0>[,<c'1>[...]]]]]
- parameters \(c_i\) for cost function of each trait.
- --init <m[,s]>
- Initial configuration with mean trait m and standard deviation s (or mutant trait, see --inittype).
- --inittype <t>
- type of initial configuration:
- uniform
- uniform trait distribution.
- mono
- monomorphic trait distribution for mean trait (see --init <m[,s]>).
- gaussian
- Gaussian trait distribution with mean m and standard deviation s (see --init <m,s>).
- delta
- mutant with trait s in monomorphic population with trait m (see --init <m,s>).