EvoLudoLab: Continuous Snowdrift Game - Branching (sqrt)

From EvoLudo
Revision as of 17:18, 10 December 2020 by Hauert (talk | contribs)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Color code: Maximum Minimum Mean
Investments:
Minimum Maximum
Payoffs & Densities:
Low High

Continuous Snowdrift game: Attractor & Repellor

For more complicated payoff functions several singular strategies \(x^*\) may be found. In this example we use \(B(x) = b_1 \sqrt{x+y}\) and \(C(x) = c_1 \ln(c_2 x+1)\). For the parameters indicated below this results in a repellor near \(x_1^*\approx 3.9\) together with a branching point near \(x^*_2 \approx 0.7\). Starting with \(x_0 < 3.9\) drives the population towards lower investments until the branching point is reached. At \(x^*_2\) two branches emerge and diverge until the upper branch reaches the boundary of the trait range. Note that for the dimorphic population the repellor near \(x_1^*\approx 3.9\) no longer exists. The trait range in the above simulation is \([0,5]\).

The parameters are set to \(b_1 = 1, c_1 = 1, c_2 = 0.6\) with players imitating better strategies proportional to the payoff difference and an initial traits/investment of \(2.8 \pm 0.02\) in a population of \(5'000\) individuals. Mutations occur with a probability of 1% and the standard deviation of the Gaussian distributed mutations is \(0.01\).

Data views

Strategies - Structure

Snapshot of the spatial arrangement of strategies.

Strategies - Structure 3D

3D view of snapshot of the spatial arrangement of strategies.

Strategies - Mean

Time evolution of the strategy frequencies.

Strategies - Histogram

Snapshot of strategy distribution in population

Strategies - Distribution

Time evolution of the strategy distribution

Fitness - Structure

Snapshot of the spatial distribution of payoffs.

Fitness - Structure 3D

3D view of snapshot of the spatial distribution of payoffs.

Fitness - Mean

Time evolution of average population payoff bounded by the minimum and maximum individual payoff.

Fitness - Histogram

Snapshot of payoff distribution in population.

Structure - Degree

Degree distribution in structured populations.

Console log

Message log from engine.

Game parameters

The list below describes only the few parameters related to the continuous snowdrift game. Follow the link for a complete list and descriptions of all other parameters e.g. referring to update mechanisms of players and the population.

--benefitfcn <f1[,f2[...]]>
benefit function for each trait:
0: \(B(x,y)=b_0\ y\)
benefits linear in opponents investment \(y\).
1: \(B(x,y)=b_0\ y+b_1\ y^2\)
benefits quadratic in opponents investment \(y\).
2: \(B(x,y)=b_0 \sqrt{y}\)
\(\sqrt{\ }\)-saturating benefits for opponents investment \(y\)
3: \(B(x,y)=b_0 \ln(b_1\ y+1)\)
\(\ln\)-saturating benefits for opponents investment \(y\)
4: \(B(x,y)=b_0 (1-\exp(-b_1\ y))\)
\(\exp\)-saturating benefits for opponents investment \(y\)
10: \(B(x,y)=b_0 (x+y)\)
benefits linear in joint investments \(x+y\).
11: \(B(x,y)=b_0 (x+y)+b_1\ (x+y)^2\)
benefits quadratic in joint investments \(x+y\) (default).
12: \(B(x,y)=b_0 \sqrt{x+y}\)
\(\sqrt{\ }\)-saturating benefits for joint investments \(x+y\)
13: \(B(x,y)=b_0 \ln(b_1\ (x+y)+1)\)
\(\ln\)-saturating benefits for joint investments \(x+y\)
14: \(B(x,y)=b_0 (1-\exp(-b_1\ (x+y)))\)
\(\exp\)-saturating benefits for joint investments \(x+y\)
20: \(B(x,y)=b_0 x+b_1\ y+b_2\ x\ y\)
benefits linear in investments \(x\) and \(y\) as well as cross term \(x\,y\).
30: \(B(x,y)=b_0 x\)
benefits linear in own investments \(x\).
31: \(B(x,y)=b_0 x+b_1\ x^2\)
benefits quadratic in own investments \(x\).
32: \(B(x,y)=b_0 x+b_1\ x^2+b_2\ x^3\)
benefits cubic in own investments \(x\).
--benefitparams <b0>[,<b1>[...[;<b'0>[,<b'1>[...]]]]]
parameters \(b_i\) for benefit function of each trait.
--costfcn <f1[,f2[...]]>
cost function for each trait:
0: \(C(x,y)=c_0\ x\)
costs linear in own investment \(x\).
1: \(C(x,y)=c_0\ x+c_1\ x^2\)
costs quadratic in own investment \(x\) (default).
2: \(C(x,y)=c_0 \sqrt{x}\)
\(\sqrt{\ }\)-saturating costs for own investment \(x\)
3: \(C(x,y)=c_0 \ln(c_1\ x+1)\)
\(\ln\)-saturating costs for own investment \(x\)
4: \(C(x,y)=c_0 (1-\exp(-c_1\ x))\)
\(\exp\)-saturating costs for own investment \(x\)
10: \(C(x,y)=c_0 (x+y)\)
costs linear in joint investments \(x+y\).
11: \(C(x,y)=c_0 (x+y)+c_1\ (x+y)^2\)
costs quadratic in joint investments \(x+y\).
12: \(C(x,y)=c_0 (x+y)+c_1\ (x+y)^2+c_2\ (x+y)^3\)
costs cubic in joint investments \(x+y\).
13: \(C(x,y)=c_0 (x+y)+c_1\ (x+y)^2+c_2\ (x+y)^3+c_3\ (x+y)^4\)
costs quartic in joint investments \(x+y\).
20: \(C(x,y)=c_0 x+c_1\ y+c_2\ x\ y\)
costs linear in investments \(x\) and \(y\) as well as cross term \(x\,y\).
--costparams <c0>[,<c1>[...[;<c'0>[,<c'1>[...]]]]]
parameters \(c_i\) for cost function of each trait.
--init <m[,s]>
Initial configuration with mean trait m and standard deviation s (or mutant trait, see --inittype).
--inittype <t>
type of initial configuration:
uniform
uniform trait distribution.
mono
monomorphic trait distribution for mean trait (see --init <m[,s]>).
gaussian
Gaussian trait distribution with mean m and standard deviation s (see --init <m,s>).
delta
mutant with trait s in monomorphic population with trait m (see --init <m,s>).