EvoLudoLab: Moran process on the complete graph

From EvoLudo
Jump to: navigation, search
Color code: Residents Mutants
New resident New mutant
Payoff code: Residents Mutants

Evolutionary dynamics on the complete graph

NOTE: due to the many links of a complete graph, the dynamical layout of the graph is likely taking some time. Depending on the speed of your computer some patience may be required.

Because mutants can spread to any part of the graph in a single step, the invasion process progresses quickly and does not exhibit any characteristic patterns.

For the simulations, the population size is \(N=100\) and hence \(4'950\) links. The fitness of residents is set to \(1\) and that of mutants to \(2\). Thus, a single mutant has approximately a \(50\%\) chance to take over the population. Typically it takes only between \(10-15\) generations for the mutant to reach fixation.

Data views

Strategies - Structure

Snapshot of the spatial arrangement of strategies.

Strategies - Structure 3D

3D view of snapshot of the spatial arrangement of strategies.

Strategies - Mean

Time evolution of the strategy frequencies.

Fitness - Structure

Snapshot of the spatial distribution of payoffs.

Fitness - Structure 3D

3D view of snapshot of the spatial distribution of payoffs.

Fitness - Mean

Time evolution of average population payoff bounded by the minimum and maximum individual payoff.

Fitness - Histogram

Snapshot of payoff distribution in population.

Structure - Degree

Degree distribution in structured populations.

Statistics - Fixation probability

Statistics of fixation probability for each vertex where the initial mutant arose.

Statistics - Fixation times

Statistics of conditional fixation times of residents and mutants as well as absorption time for each vertex where the initial mutant arose.

Console log

Message log from engine.

Game parameters

The list below describes only the few parameters related to the evolutionary dynamics of residents and mutants with fixed fitness (constant selection). Numerous other parameters are available to set population structures or update rules on the player as well as population level.

--resident <r>
fitness of resident r.
--mutant <m>
fitness of mutant m.
--initfreqs <m:r>
initial frequencies of residents r and mutants m. Frequencies that do not add up to 100% are scaled accordingly. If either frequency is zero, the population is initialized to a homogenous state with just a single, randomly placed individual of the opposite type.